If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3j^2+16j+13=0
a = 3; b = 16; c = +13;
Δ = b2-4ac
Δ = 162-4·3·13
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-10}{2*3}=\frac{-26}{6} =-4+1/3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+10}{2*3}=\frac{-6}{6} =-1 $
| 5.5x32=57 | | 6y+8=5y+8 | | 12•n=3 | | 36=-3(n+10) | | 4y−y+11=38 | | 1/2x+3=5/8x-1 | | -16=4(d+6) | | |p+3|=10 | | 3(1-3v)=-4(2v-3) | | 6y-9=9y-4y | | |2t+3|+2=9 | | 2(x+)=3x-1 | | 32=5n+4 | | -3=3x-6x | | 3(x+5)-5x=2(-4x+8) | | -38-4r=-7(8r-2) | | -3-6p=9 | | 6=-2(7-c | | 12x-18+54=180 | | 32w^2-64=0 | | -6x+9x=-3 | | 5n+4=32 | | 5*11*n=55 | | −5p^3−5p^2+60p=0 | | 3/7*t=6 | | -2(2x-2)+2(2x+2)=5x+18 | | 5=z/12 | | 7(x+(-4))=14 | | -13=-5+2z | | 2-3(5b+2)=-94 | | m+3m+1=41 | | 5+x/14=2 |